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Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities
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An anisotropic lattice model in two spatial dimensions, with on-site and intersite cubic nonlinearities (the
Salerno model), is introduced, with emphasis on the case in which the intersite nonlinearity is self-defocusing,
competing with on-site self-focusing. The model applies, for example, to a dipolar Bose-Einstein condensate
trapped in a deep two-dimensional (2D) optical lattice. Soliton families of two kinds are found in the model:
ordinary ones and cuspons, with peakons at the border between them. Stability borders for the ordinary solitons
are found, while all cuspons (and peakons) are stable. The Vakhitov-Kolokolov criterion does not apply to
cuspons, but for the ordinary solitons it correctly identifies the stability limits. In direct simulations, unstable
solitons evolve into localized pulsons. Varying the anisotropy parameter, we trace a transition between the
solitons in 1D and 2D versions of the model. In the isotropic model, we also construct discrete vortices of two
types, on-site and intersite centered (vortex crosses and squares, respectively), and identify their stability
regions. In simulations, unstable vortices in the noncompeting model transform into regular solitons, while in
the model with the competing nonlinearities they evolve into localized vortical pulsons, which maintain their
topological character. Bound states of regular solitons and vortices are constructed too, and their stability is

identified.
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I. INTRODUCTION

A well-known feature of dynamics in nonlinear lattices is
the drastic difference between generic nonintegrable sys-
tems, such as the discrete nonlinear Schrodinger (DNLS)
equation [1], and exceptional integrable models, such as the
Ablowitz-Ladik (AL) equation [2]. While discrete solitons in
integrable equations are available in an exact form, their
counterparts in nonintegrable systems should be sought nu-
merically [1] or by means of a variational approximation [3],
although in specially selected nonintegrable models particu-
lar exact soliton solutions can be found too [4].

As the DNLS and AL equations differ in the type of the
nonlinear terms (on-site or intersite) and converge to a com-
mon continuum limit in the form of the ordinary integrable
NLS equation, a combined model can be naturally intro-
duced, mixing the cubic terms of both types. Known as the
Salerno model (SM) [5], this combined model is based on
the discrete equation

d
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where @, is the complex field amplitude at the nth site of the
lattice, and real coefficients w and v account for the nonlin-
earities of the AL and DNLS types, respectively.

The SM was studied in a number of works, see Refs.
[6-10] and references therein. It has been demonstrated that
Eq. (1) gives rise to static (and, sometimes, moving [7-9])
solitons at all values of the DNLS coefficient, », and all
positive values of its AL counterpart, u. Negative values of v
can be made positive by means of the staggering transfor-
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mation, ®,— (-1)"®,, and then one may fix v=+1 by the
rescaling, ®,—d,/ Vv (if v#0). However, the sign of u
cannot be altered. In particular, there are no solitons in the
pure AL model (v=0) with ©<0.

The SM with ©<0 is a system with competing nonlin-
earities, where, in particular, soliton dynamics may be quite
different from those in the ordinary SM (with positive ). In
the one-dimensional (ID) setting, the SM with u<<0 was
introduced in Ref. [10]. It is relevant to mention that, while
the SM was originally proposed as a dynamical model in a
rather abstract context, the direct physical realization, has
recently been found as a limit form of the Gross-Pitaevskii
equation for a Bose-Einstein condensate (BEC) of atoms
with magnetic momentum (actually, >*Cr [11]) trapped in a
deep optical lattice [12]. In that case, the on-site nonlinearity
accounts (as usual) for collisions between atoms, while the
intersite nonlinear terms take into account long-range dipole-
dipole interactions, which may be attractive (u>0) or repul-
sive (u<<0), if the external magnetic field aligns the atomic
momenta, respectively, parallel to the lattice or perpendicular
to it.

Soliton solutions of the SM with © <0 were also investi-
gated in Ref. [10]. It was demonstrated that Eq. (1) with u
<0 and normalization v=1 gives rise to soliton families of
two different types, viz., ordinary ones (which are similar to
solitons in the SM with w>0) and cuspons, which are char-
acterized by a higher curvature in the center than in the ex-
ponentially decaying tails. At the border between the two
species of soliton solutions, a special soliton appears, in the
form of a peakon. In the continuum limit of Ref. [10] with
m <0, a peakon solution is available in an exact analytical
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form, while cuspons do not exist in this limit. Stability of the
discrete solitons in the SM with the competing nonlinearities
was also investigated in Ref. [10], with a conclusion that
only a small subfamily of the ordinary solitons is unstable,
and all cuspons, including the peakon, are stable. In fact, the
stability and instability of the ordinary solitons were cor-
rectly predicted by the known Vakhitov-Kolokolov (VK) cri-
terion [13] (its definition is given below), while it does not
apply to cuspons.

Bound states of solitons with phase difference Ap=0 and
7 were also studied in Ref. [10]. For ordinary solitons, the
character of the bound states is the same as in the DNLS
equation, i.e., stable and unstable bound states have, respec-
tively, Ap=7 and 0. However, they exchange the stability
precisely at the point where the bound solitons are peakons,
stable bound states of cuspons having Aep=0.

Moving quasisoliton states, composed of a moving local-
ized core and a spatially extended background, were also
found in Ref. [10], up to a critical value of the strength of the
self-defocusing intersite nonlinearity, |u|. It was demon-
strated that collisions between moving solitons always lead
to their merger into a single pulse.

The SM can be introduced in the two-dimensional (2D)
setting as well. This may find a straightforward physical ap-
plication as a discrete model for the BEC of dipolar atoms
trapped in a deep two-dimensional optical lattice, cf. Ref.
[12]; in that case, assuming that a strong magnetic field
aligns the momenta perpendicular to the lattice plane (and
the condensate is strongly confined in the vertical direction),
one will again deal with the dipole-dipole repulsion, i.e.,
©n<0 in Eq. (2), see below.

New dynamical properties featured by solitons in the 1D
SM with competing nonlinearities suggest investigating soli-
tons in the 2D version of the model, which is the subject of
the present work. We aim to consider the 2D lattice model in
its general anisotropic form, which will make it possible to
trace a transition between the 1D and 2D versions of the SM.
After setting up the 2D model in Sec. II, we present soliton
families and their stability in Sec. III. Similar to the 1D case,
both ordinary solitons and cuspons are found in the 2D
model, with peakons precisely at the border between them.
The stability analysis is performed through the computation
of the Floquet eigenvalues for small perturbations, and veri-
fied in direct simulations. As a result, we identify stability
diagrams in relevant parameter planes. Unstable solitons of
the ordinary type are not destroyed, but are transformed into
pulsons (breathing solitons), while all cuspons are found to
be stable. The stability of bound states of solitons is also
analyzed.

A new class of solitons, possible in the 2D model, are
discrete vortices [15]. We investigate vortex solitons of two
types, crosses and squares, in Sec. IV (in the framework of
the isotropic model). Analysis of small perturbations reveals
parametric stability regions (which turn out to be rather nar-
row) for the vortices, and helps to identify various bifurca-
tions (including a generic Hamiltonian Hopf bifurcation) re-
sponsible for their destabilization. Direct simulations
demonstrate that the instability transforms the vortices into
ordinary solitons in the case of ©>0, and into vortex pul-
sons, that keep the vortical topology, in the most interesting
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case of competing nonlinearities, u<<0. Finally, we intro-
duce bound states of vortex crosses and analyze their stabil-

ity.

II. THE MODEL

The 2D version of the Salerno model is based on the
equation for complex lattice variables @, (1),

d
iE®n,m =- a[(q)n+1,m + cI)n—l,m) + C(q)n,m+l + (Dn,m—l)]

X (1 + /"L|®n,m|2) -2 V|q)n,m|2q)n,m > (2)

where « is the strength of the coupling between adjacent
lattice sites [in Eq. (1), a=1], and C accounts for anisotropy
of the 2D lattice [C=1 and 0 correspond, respectively, to the
isotropic 2D lattice and its 1D counterpart, see Eq. (1)].
Variation of C will make it possible to observe the dimen-
sionality crossover (from 1D to 2D). The nonlinear coeffi-
cients in Eq. (2), v and u, have the same meaning as in the
1D model.

Similar to the 1D version of the SM, Eq. (2) conserves the
Hamiltonian and norm,

H=- CME ((Dn,mq_)n+1,m + (I)n+1,mq_)n,m) - CZCE (q)n,mq_)n,m+l

- 2v 2v
+ q)n,m+lq)n,m) - E _|(I)n,m|2 - Eln(“ + Iu’|q)n,m|2)]s
3)
1
N==2 (|1 + 4@, (4)

m,n

It is also relevant to take a continuum limit of Eq. (2). To
this end, we adopt the normalization a=v=1 (see below),
proceed from the discrete coordinates (n,m) to continu-
ous ones, (x,y)=(n/ V’;,m/\e"a), and define P, ,
=(1/ V’Z)‘I’(x, v)exp[2ia(1+C)t]. Then, the continuum
counterpart of Eq. (2) is

i+ (L+ p| WA, + W) +2[(1+ Op+ 1]V ¥ =0.
(5)

[Note that this equation may always be cast in the isotropic
form.] Stationary solutions to Eq. (5), W(r,t)=e "“'F(r),
where r=+x>+y?%, can be found in an exact form for w
=2[(1+C)—|u|™']. At this value of the frequency, Eq. (5)
reduces to the linear equation, F "+ VF' + wF =0, whose so-
lution is available in terms of the Bessel functions (however,
this solution cannot be simultaneously localized and nonsin-
gular). For © <0, the amplitude of the solutions is limited to
F(0)=<|u|™", the limiting case of F(0)=|u|""? correspond-
ing to a radial peakon, with the asymptotic form F(r)
=|u|"?=cr+0(r?) at r—0, where the constant ¢ is related
to w and u: c*=|u|"'=(1+C)+w/2. However, the peakon
solution and the value of w corresponding to it (at given
u<0) cannot be found in an exact form, unlike the 1D ver-
sion of the model [10]. Finally, we notice that in both cases
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of positive and negative u, the dispersive nonlinear term in
Eq. (5), u|W[*(¥,,+W¥,,), prevents collapse. Therefore, qua-
sicollapse [16] is not expected in the discrete model either.

II1. DISCRETE SOLITONS
A. Soliton families

First, we focus on solutions to Eq. (2) in the form of
pinned discrete solitons. For this purpose, we aim to con-
struct families of the soliton solutions (labeled by their inter-
nal frequency w,,) for different values of w and C, keeping
v=1 and a=1, which is possible due to the scaling invari-
ance of the model. We compute the solutions by means of a
numerical-continuation procedure based on a shooting
method (which makes use of the Newton-Raphson scheme).
We start from the well-known soliton solutions for the 2D
DNLS equation, corresponding to =0, which, in turn, can
be obtained by the continuation in « from the anticontinuum
limit, =0, up to the above-mentioned fixed value, a=1.
Then, our continuation seeds a set of solutions at different
frequencies and several different values of C, which are sub-
sequently continued in u. Typically, the difference between
the soliton frequencies used for each C was dw,=8 X 1072
(which is also the lowest frequency taken close to the edge of
the phonon band), and the continuation step in u was Su
=2X 1072 In this way, we scanned the family of discrete
solitons in the entire (C, u, w;,) space. The 2D lattice used in
the computations was typically an N XN square with peri-
odic boundary conditions. We used different lengths N, de-
pending on the width of the soliton (so as to have N much
larger than the size of the soliton, or of soliton bound states,
if the latter were studied).

As noted above, varying C from 0O to 1 allows one to
observe the transition from a one- to a two-dimensional lat-
tice. We will concentrate on the existence of 2D cuspons and
their stability. In the 1D case, cuspons exist for u <0, when
the on-site and intersite nonlinearities are competing [10].
These solutions present highly localized profiles, with the
decay rate around the localization center higher than in tails
of the solutions. Another relevant result of the 1D case is that
low-frequency solitons are unstable in a narrow interval of
negative values of u. The instability observed in the 1D case
transforms the discrete soliton into a pulsonic state. Note that
the standard 2D DNLS lattice features a similar unstable be-
havior for low-frequency solitons, and a similar instability
was previously also found in the ordinary (u>0) 2D SM
[17,18]. It is interesting to find a link of the soliton instability
in the 2D SM (2) with x>0 and the above-mentioned insta-
bility of solitons in the 1D model with x<<0, which we will
do in this paper (see below).
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FIG. 1. (Color online) Inten-

0

8:; sity profiles, |®, %, of two dis-
oj crete solitons found for C=1 (iso-
879 tropic case) and frequency w

=4.22: (a) u=-0.2; (b) ©u=-0.88.
The latter solution is a cuspon,
which features stronger localiza-
tion at its center than in the tails.

.15—10'5

First, we consider the shape of solutions produced by the
continuation. As expected, cuspons appear when u is nega-
tive and of sufficiently large absolute value. In Fig. 1, we
display discrete solitons found at C=1 (in the isotropic lat-
tice) and w,=4.22, for two different values of w. As seen in
Fig. 1(b), the cuspon indeed features a higher spatial decay
rate around its center, (ny,my), than far from it.

To characterize the transition from usual discrete solitons
to the cuspons, we fitted the decaying tail of the soliton
along the vertical and horizontal directions on the
lattice, (ng,m— ) and (n— =% ,mg), to the expected
asymptotic forms, | =Aexp(-I'y|m—m|) and

ngm—xel =
(asymp) .
|, ), respectively. Once two

pairs of parameters (A,,I’,) and (A,,T’)) are found, one can
determine whether the decay rate (localization degree)
around the soliton’s center is higher or lower than in the tails,
by defining two sharpness parameters (cf. a similar definition
adopted in Ref. [10] for the 1D case), )/XEAX—|(I>,,0,m0 , and
Yy =A,=|®, ,,|. Obviously, y,=7, in the isotropic model
(C=1); however, v, and v, are different in anisotropic lat-
tices. We have computed both quantities as the continuation
in u was performed for each soliton at frequency w,. For a
given pair of parameters C and w;,, it was found that, for
higher (in particular, less negative) values of u, both vy, and
7, are positive, thus pointing out that the localized states are
ordinary discrete solitons (not cuspons). Decreasing u, one
finds a critical value, u=pu,, at which y,=0, which corre-
sponds to a peakon profile [10] in the (vertical) direction of
weak coupling, (ny,m). If u is further decreased, we then
have 7y,<0, while v, is still positive (i.e., the soliton is a
semicu&pon), until the second critical point is reached,
m=p<p,, where ,=0, and the soliton assumes a peakon
profile in the (horizontal) direction of strong coupling,
(n,my). Finally, at < pu,, both v, and v, are negative, and
the discrete soliton is a cuspon in both directions. Figure 2
shows the critical values, u, and u,, versus w, for several
fixed values of C. As noted above, w,=u, when C=1, while
for C=0 (the 1D limit), only u, exists.

0| =A.exp(-T';|n—nq

B. Linear stability analysis for discrete solitons

Concomitant with the continuation of the soliton solutions
in u, we examined their linear stability. To this end, we
constructed the Floquet operator, F, that governs the trans-
formation of a small perturbation, ®, on top of the station-
ary solution after period T, =27/ w,, P (ty+T,)=FP(1,).

To build the operator, we make use, as usual, of the lin-
earization of Eq. (2). By computing eigenvalues of operator

F (Floquet multipliers), \; (j=1,...,NXN), and the respec-
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FIG. 2. Solid and dashed curves show, respectively, the critical
values of the intersite nonlinearity coefficient, w, and w,, at which
¥,=0 and y,=0, as a function of the soliton’s fréquency for several
values of the anisotropy parameter C.

tive eigenvectors, one can determine the stability of the dis-
crete solitons and identify unstable perturbation modes (if
any). Due to the symplectic (conservative) character of the
model, the only possibility for the stability is [\;[=1 for all j.
Performing the Floquet analysis for every computed solu-
tion, we have generated a full stability diagram in the (wp, 1)
plane (including both positive and negative w) for several
values of C. This is shown in Fig. 3. For ©#>0 we observe,
as expected (see [17,18]), an unstable region corresponding
to the low-frequency solitons. In this case, the instability
development leads to a pulsonic state, similar to what was
found in Ref. [10] in the 1D version of the model. On the
other hand, for ©<<0, all cuspons are found to be linearly
stable. This is a new result for 2D lattices of the DNLS type.

Another important result concerns the relation to instabil-
ity of 1D solutions at . <<0. Taking a close look at the evo-
lution of the stability diagrams as C decreases, one can moni-
tor a transition from the 2D isotropic model to its 1D
counterpart. We thus observe (see contour plots in Fig. 3)
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that there is a subregion in the (w;,,u) plane, for each value
of C, where the largest values of |\ ;| are much higher than in
the rest of the unstable region. This subregion continuously
deforms as C varies, and, as C—0, it approaches the un-
stable region found in the 1D model [10].

We have also checked the validity of the Vakhitov-
Kolokolov (VK) criterion for the stability of solitons in the
present model. This criterion states that a necessary condi-
tion for the soliton’s stability is IN7dw,>0 [13]. We have
computed the norm of the solutions as per Eq. (4), to gener-
ate surfaces N{wy,, u) for several values of C, see Fig. 3. In
the figure, we have also plotted curves at which dN7dw),
changes sign, thus separating the predicted stable and un-
stable regions. Comparison with the rigorous results pro-
duced by the Floquet analysis confirms the validity of the
VK criterion. A noteworthy feature of surfaces M wy, i) is
the divergence when the soliton’s amplitude attains the value
|<I)”0,m0|2= 1/|u|. In the 1D model (C=0), this happens for an
exact peakon solution, whereas for C>0 we observe that the
divergence curve in the (wj,u) plane is located below the
curve of u=pu,(wp), i.e., it happens for cuspon states. Exam-
ining the norm for cuspons with the amplitude exceeding
1/+|u|, we conclude that dN7dw, <O for all wp. In this re-
gion (after the divergence of the norm occurs), the VK cri-
terion predicts the instability of cuspon states contrary to the
results of the Floquet analysis. [The stability of perturbed
cuspons was also confirmed by direct simulations of Eq. (2).]
Hence, the VK criterion does not apply to the cuspons with
|(Dn0m0| >1 /\’|lu“|

C. Bound states of discrete solitons

In addition to isolated solitons in Eq. (2), we studied nu-
merically their bound states. Two types, in-phase and
m-out-of-phase, of pairs of identical solitons, with the same

FIG. 3. (Color online) Stability
diagrams in the (u, w;) plane cor-
responding to different values of
the anisotropy parameter C. Con-
tour plots show maximum abso-
lute values of the Floquet multi-
pliers, max {|\;[}. Beside each
contour plot, norm surfaces,
N(u, wp), are plotted for the corre-
sponding values of C. Curves at
which the sign of slope dN7dwy,
changes are plotted on top of
the surfaces. According to the
Vakhitov-Kolokolov criterion,
these curves separate stability and
instability regions.
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FIG. 4. The absolute value of the Floquet multipliers as a func-
tion of u for in-phase (top) and out-of-phase (bottom) axis-aligned
bound states of solitons with w,=7. The figure shows cases when
the two soliton centers are separated by d=3, 5, and 7. It can be
observed that, irrespective of the value of d, the stability inter-
change occurs at u=-0.3.

frequency w, and different distances between them, were
analyzed. For this purpose, we first continued these solu-
tions, at w=0, from the anticontinuum limit up to the 2D
DNLS equation (C=v=a=1), and then decreased the value
of w into the region of competing nonlinearities (u<<0). At
the same time, the linear stability analysis of these periodic
solutions was performed by the numerical computation of
their Floquet spectra.

We have computed two different patterns of bound states
of solitons. The first type cons1sts of two discrete solitons
with their centers, (n0 ,m0 ), j=1,2, lying on the same lat-

tice axis (so that n0 _ngz) or m(()1> 0)), whereas for the

second type of bound states the centers are related by
f)l) 82)+d and m ):mgz) +d, i.e., they are aligned along a
diagonal of the lattice. In Fig. 4, we show the absolute value
of the Floquet multipliers as a function of u for in-phase and
out-of-phase bound states, aligned along a lattice axis for the
case of w,=7.0, with three different values of the distance
between soliton centers in the pair. Results of similar
computations for the diagonal-aligned bound states with
w,=8.0 are shown in Fig. 5. As in the 1D version of the
model [10], for =0, in-phase bound states are linearly un-
stable (the more unstable the closer solitons are in the pair),
while out-of-phase pairs are stable. As observed in Figs. 4
and 5, at u=-0.3 for the pattern of the first type (w,=7.0),
and at u=-0.25 for the second one (w,=38.0), the in-phase
bound states become stable regardless of the distance be-
tween solitons. Simultaneously, out-of-phase states become
unstable, also regardless of the separation between soliton
centers. The same stability exchange between in- and out-of-
phase states was observed in the 1D case [10], where it oc-
curs at the value of w at which the discrete soliton solution is
a peakon. However, in the 2D case the solitons in the pair are
cuspons on both sides of the stability-exchange point. Nev-
ertheless, we find, for both types of the bound states, that the
values of w at this point are exactly the same as those at
which the cuspon’s norm, M{wy, i), diverges (see the previ-
ous subsection). In other words, the stability interchange be-
tween in- and out-of-phase bound states is associated with
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FIG. 5. The same as in the previous figure for in-phase (top) and
out-of-phase (bottom) diagonal-aligned bound states of solitons
with w,=8. Shown are the results for the states with the separation
between the soliton centers d=1, 2, and 3. It can be observed that
all these states undergo the stability exchange at u=-0.25.

the divergence of the soliton norm N{w,,u), rather than to
the appearance of a peakon (contrary to the 1D case, where
the emergence of a peakon and norm divergence occurs si-
multaneously). Thus, although the divergence of the norm
does not switch the stability of single discrete solitons, it
marks the stability border of bound states of the solitons,
regardless of their size and orientation relative to the lattice.

IV. DISCRETE VORTICES

A natural generalization of the fundamental discrete soli-
tons is discrete vortices, which are well-known solutions of
the ordinary 2D DNLS model [15]. A vortex is characterized
by the phase circulation around its center, A6, that must be a
multiple of 27. Hence they may be labeled by an integer
number (vorticity, or topological charge), S=A0/(2).

In this work, we consider vortices only in the isotropic
model (C=1), with the objective of analyzing the effects of
competing nonlinearities on them. (In the framework of the
2D DNLS model, the influence of the lattice anisotropy on
fundamental and vortical discrete solitons was studied in
Ref. [19].) We will construct two types of vortices, on-site-
and off-site-centered ones (alias vortex crosses and vortex
squares), both with |S|=1. Vortex squares are characterized
by the number of lattice bonds, M, that each side of the
square comprises; in this work, we only deal with M=1. Two
examples of these two species of the solutions are plotted in
Fig. 6.

A. Vortex crosses

To construct fundamental (|S|=1) vortex crosses centered
around the lattice site (ng,mg), we start with the anticon-
tinuum (a@=0) DNLS (w=0) limit. The corresponding seed
pattern includes nonzero fields

® —iP ) = id =Vaw,/2.

(6)

Then, by adiabatically increasing the intersite coupling
(Newton continuation in «), we reach the isotropic DNLS

nO,mO+1 = no+1,m0 - no,m()—l ng=1,my
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N - © = DN

FIG. 6. (Color online) Two examples of fundamental (|S|=1)
discrete vortices. Profiles of the real part of the square vortex with
M=1 and vortex cross are shown in the top and bottom panels,
respectively. Both solutions are found for u=-0.4 and w,=7.0 (as
noted in the text, we fix C=a=1 for the vortex solutions).

model, and start the continuation to positive values of the
intersite nonlinearity, w. Performing the continuation in « at
m=0, we have found that, for low-frequency vortex solu-
tions, there is a critical value, «,, that depends on frequency
wy, at which a Hamiltonian Hopf bifurcation (HHB) [20]
occurs, the vortex solution being unstable at a> a,.(w,). This
phenomenon was already reported in previous works [15,19].

Higher-frequency vortex solutions, which are stable in the
DNLS equation in the considered range of parameters, un-
dergo destabilization through a bifurcation of the same type
as a result of the continuation in u, at a=1. The
Hamiltonian-Hopf character of the bifurcation can be seen in
Fig. 7(c), which shows the Floquet spectrum after the bifur-
cation: it is seen that a quadruplet of complex eigenvalues A;
exit the unit circle. After this (first) bifurcation, further bifur-
cations of the same type occur at increasing values of u, as
observed in the right part of Fig. 7(a). Similar to what was
reported in Ref. [15] for the DNLS model, in direct simula-
tions unstable vortex crosses evolve into on-site-centered
fundamental discrete solitons (with S=0) by transferring al-
most all the energy to one of the sites that originally formed
the cross. The corresponding instability border (for a=1) in
the (u, wp) plane is depicted by the right curve of Fig. 7(b).

More interesting is the case of w<<0. In this regime, we
have found that fundamental vortex crosses experience an-
other bifurcation, with a quadruplet of Floquet eigenvalues
leaving the unit circle at A\=+1 (the so-called harmonic bi-
furcation). With the decrease of u, the corresponding two
pairs of eigenvalues move along the real axis in the opposite
direction, until each pair breaks up, as shown in Fig. 7(d).
The unstable eigenvectors, 8®" and 8D, associated with
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FIG. 7. (a) The absolute value of the Floquet multipliers as a
function of u for a vortex cross with w;,=8. Two bifurcations can be
inferred from the Floquet distributions in panels (¢) and (d): a
Hamiltonian Hopf bifurcation at ©=0.46, and a harmonic bifurca-
tion (which is defined in the text) at u=-0.3. A similar set of two
bifurcations is found at other frequencies. The entire stability dia-
gram is displayed in panel (b), showing a narrow stability region.

this bifurcation are plotted in Figs. 8(a) and 8(b) (in this
notation, * does not stand for complex conjugation). The
shape of each eigenvector reveals strong localization at two
opposite sites of the vortex cross, each one separately break-
ing the spatial symmetry (2D isotropy) of the original solu-
tion. Adding a small perturbation to the solution along one
unstable direction causes oscillations of the amplitudes
around the vortex’ center, as shown in Fig. 8(c). Such behav-
ior persists at longer times; in fact, the vortex pattern does
not disappear but rather suffers irregular modulations of its
local amplitudes.

This picture of the instability development supplements
the stability diagram for the fundamental vortex crosses,
which is displayed in Fig. 7(b) in the (u, w;) plane (as noted
above, for the isotropic model, with C=1). Note that the
border of the instability that transforms the vortex cross into
its oscillatory counterpart (the left curve in the figure) stays
in the w<<0 region, even for large frequencies. Therefore,
unlike the HHB described above, this instability is domi-
nated by the competition between the defocusing intersite
and focusing on-site nonlinearities. A further insight into the
nature of this bifurcation is provided by the observation that
it coincides exactly with the divergence of norm M, u) of
the discrete soliton (and of the vortex cross solution), and
thus it coincides with the stability interchange between in-
phase and out-of-phase bound states analyzed above in Sec.
I cC.

Regarding the vortex cross as made up of two (perpen-
dicular) out-of-phase bound states of solitons (say, left-right
and top-bottom), one would be tempted to interpret the qua-
druplet of eigenvalues leaving the unit circle at +1 as the two
pairs of eigenvalues that signal the simultaneous instability
of both out-of-phase bound states. At least, this interpretation
would explain the fact that a quadruplet of eigenvalues si-
multaneously leave the unit circle at +1, and it is fully con-
sistent with the shape of the Floquet eigenvectors in Fig. 8.
This interpretation suggests that the bifurcation of vortex
crosses occurring in the left part of Fig. 7(b) is the same one
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FIG. 8. (Color online) (a) and (b) Intensity profiles of the un-
stable Floquet eigenvectors, 8" 6D, corresponding to the bifur-
cation at u=-0.3 (for a=C=1) of the vortex cross with w,=8, see
Fig. 6(d). (c) Time evolution of the lattice field at sites around the
center of the same unstable vortex solution. Pulsonic dynamics of

the amplitudes is observed, without decay of the vortex pattern.

experienced by out-of-phase bound pairs of solitons in Fig. 4
(for separation d=1). In any case, a noteworthy numerical
finding is that these bifurcations (of bound states and vortex
crosses) not only coincide but are also characterized by the
divergence of the soliton norm.

B. Vortex squares (with M=1)

We have also studied the smallest (M=1) vortex squares
carrying S=1 vorticity. For this purpose, we have performed
the continuation of the corresponding solution family, start-
ing from a configuration with nonzero components (D"oJ”o
_—iCDnO,m,+1=—q)n0+1,m0+1=iq)n0+1,m(,=\“"wb/z in the anticon-
tinuum limit, cf. Eq. (6). As in the case of the vortex cross,
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FIG. 9. (a) The absolute value of the Floquet multipliers as a
function of w for a vortex square of minimum size (M=1) with
w,=8. Two bifurcations are revealed by Floquet distributions in
panels (c) and (d). At u=0.14, we find a Hamiltonian Hopf bifur-
cation, whereas at u=-0.04 a quadruplet of eigenvalues leave the
unit circle and start a short trip to +1, from where they leave the
unit circle again. The entire stability diagram is represented in panel
(b), showing a narrow stability region.

we have first performed the continuation in the coupling con-
stant « to obtain the corresponding solutions for the DNLS
model (a=1, w=0). Again, for low-frequency vortex
squares, we have observed an HHB at some critical value of
a. For high-frequency solutions, a bifurcation of the same
type is observed when the continuation is performed from
the DNLS model to values w>0. In Fig. 9(a), one can ob-
serve this bifurcation for the vortex square with w,=8. The
corresponding HHB [see Fig. 9(c)] occurs with a quadruplet
of the Floquet eigenvalues leaving the unit circle. The behav-
ior of the unstable solution is the same as for the vortex
cross, and, after a transient, a regular soliton with S=0
emerges at one of the corner sites of the former vortex
square, while the field at three other corners nearly vanishes
(i.e., the energy mainly concentrates at a single site of the
initial vortex structure).

With the continuation of the vortex square to u<<0, we
have again (as in the case of vortex crosses) found that the
solutions suffer a destabilizing bifurcation different from that
at u>0. However, the bifurcation for <0 [see Fig. 9(d)] is
also different from its counterpart for the vortex cross [which
was displayed above in Fig. 7(d)]. At some value u<0, a
quadruplet of Floquet multipliers leave the unit circle, to
return to it at +1. After this brief excursion, they immediately
leave the unit circle again, and instability grows with |u/.
Unlike its counterpart for the vortex cross, this bifurcation
does not correspond to the interchange of stability for the
bound state of solitons analyzed in Sec. III C, which actually
occurs at a lower value of w, where the vortex square is
already unstable. However, it is remarkable that precisely at
this value of wu the quadruplet of eigenvalues outside the unit
circle meet instantaneously at +1, so that the vortex square is
marginally stable at that point.

Profiles of unstable eigenvectors, 6®" and SP™", are
shown in Figs. 10(a) and 10(b). Each one is localized at two
nonadjacent corners of the plaquette where the vortex square
is located. The dynamics triggered by the original solution
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FIG. 10. (Color online) (a) and (b) Intensity profiles of the un-
stable Floquet eigenvectors, & and 6®*", corresponding to the
bifurcation, at ©=-0.04 (for a=C=1), of the vortex square with
wp,=8, shown in Fig. 8(d). (c) The time evolution of the lattice field
at the vortex-square’s corners for the same unstable solution. The
simulations reveal periodic evolution of the amplitudes with a clear
sequence of energy transfer between the adjacent sites following the
same pattern as the current flux in the original vortex solution.

being perturbed by this 8®" (or equivalently 60™) is dis-
played in Fig. 10(c). Again (as in the case of the vortex
cross), the vortex pattern is not destroyed (in contrast with
the unstable behavior at w>0). Instead, the lattice field at
the vortex-square sites develops a periodic pulsonic behav-
ior, in which at least two frequencies can be identified. One
of the frequencies accounts for periodic transfer of energy
between four corners of the square vortex, following the
same path as the flux current: (ng,mg)— (ng,me+1)— (ng
+1,my+1)— (ng+1,my) — (ny,my). Another noteworthy
feature of the dynamics in this case is that the total amount
of energy that is periodically transferred between neighbor-
ing sites varies, also in a regular periodic fashion, thus giving
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FIG. 11. (Color online) A schematic representation of the in-
phase (a) and out-of-phase (b) bound states of vortices with S=1, in
the limit of @=0, v=C=1, u=0. Vectors stand for the instantaneous
values of ®,,, in the complex plane, with |®,,|=\w,/2. These
solutions are continued in « up to a=1, and then continued in u.
Panel (c) shows the evolution of the Floquet multipliers as a func-
tion of u when w<<0. The results correspond to w,=8 and the
distance between the two vortex centers is set to be d=5 [as seen in
(a) and (b)].

rise to the second frequency. Again (as happened for the
vortex cross), the instability observed at w <0 induces a pul-
sonic dynamics of the lattice amplitudes but, in the present
case, the dynamics is much more regular. An intriguing nu-
merical observation is that the value of u at which the qua-
druplet of eigenvalues meet at +1(so that the vortex-square
solution momentarily becomes marginally stable) occurs ex-
actly when the soliton norm diverges.

The entire stability diagram for the fundamental vortex
squares is presented in Fig. 9(b). Again, we find a narrow
stability region for low-frequency vortex squares that ex-
pands as the frequency increases.

C. Bound states of discrete vortex crosses

As a first step toward the characterization of the stability
of more complex 2D arrangements of vortices, we have stud-
ied two types of bound states of vortex crosses, with the
vortex centers aligned along a lattice axis (say, the x direc-
tion). In the two types of bound state, the vortices have equal
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or opposite vorticities, see Figs. 11(a) and 11(b). Both types
of solutions were studied on the isotropic lattice (C=a=v
=1 and u<0), and were numerically obtained by the con-
tinuation at w=0 from the anticontinuum limit, followed by
the continuation in the direction of negative w. The Floquet
spectrum of the solution was also numerically computed
along the continuation path.

At u=0, bound states of vortices with equal vorticities are
stable, while those with opposite vorticities are unstable. To
explain this numerical observation, one has to realize that the
rightmost member of the soliton set forming the left vortex,
and its leftmost counterpart in the right vortex, are out-of-
phase (in-phase) in the former (latter) case; see Figs. 11(a)
and 11(b). Thus, the stability analysis of bound states of
solitons reported above in Sec. III C suggests that the stabil-
ity of the bound states of vortices is actually dominated by
the stability of the local bound state of the two constituent
solitons (one from each vortex) that are in closest proximity.
This analysis is further validated by comparison of unstable
Floquet eigenvalues for the bound state of vortices with op-
posite vorticities and those for the bound state of in-phase
solitons (for the corresponding values of the frequency and
separation between the centers).

When u decreases, a destabilizing bifurcation occurs, as
expected, in the equal-vorticity bound state, precisely at the
same value of u where the simultaneous instability of the
vortex crosses (in Sec. IV A) and the out-of-phase bound
state of ordinary solitons occurs. By inspection of the Flo-
quet spectrum for the bound state of vortices, one can clearly
identify pairs of eigenvalues associated with each of the in-
stabilities that take place simultaneously at this bifurcation
point.

V. CONCLUSIONS

In this paper, we have introduced a two-dimensional lat-
tice model with competing on-site self-focusing and intersite
self-defocusing cubic nonlinearities (the Salerno model), as a
generalization of the recently considered 1D model [10]. The
2D model may find direct application to the description of a
dipolar BEC trapped in a deep 2D optical lattice. The general
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anisotropic version of the 2D model was considered, which
made it possible to follow the transition from the 1D lattice
to its 2D counterpart.

Soliton families (of zero vorticity) of two kinds were
found: ordinary ones and cuspons, with peakons at the bor-
der between the two families. Stability diagrams for the or-
dinary solitons were produced, and it was found that all cu-
spons, as well as the peakons, are stable. While the Vakhitov-
Kolokolov criterion does not apply to cuspons, it has been
verified that it correctly predicts the instability boundary of
the ordinary solitons. In direct simulations, unstable solitons
turn themselves into localized pulsons. The stability analysis
of in-phase and out-of-phase bound states of solitons in the
isotropic lattice reveals that there is a stability interchange
between both types of bound states, precisely at the same
value of the intersite-nonlinearity parameter () where the
soliton norm diverges.

In addition to fundamental solitons, discrete vortices of
two types, cross- and square-shaped ones, have also been
constructed, and their stability regions identified. In direct
simulations, unstable vortices in the 2D Salerno model of the
ordinary type transform into regular solitons, while in the
model with the competing nonlinearities the instability trans-
forms vortices into localized vortical pulsons, without de-
stroying their topological character. Regarding the stability
of bound states of vortex crosses, we have shown that it is
determined by the stability of the local bound state of two
constituent solitons (forming the two vortices) which are in
closest proximity.

The investigation of solitons in the 2D Salerno model,
especially in the case of competing nonlinearities, can be
continued in various directions. Among relevant problems
are the study of more complex bound states of regular soli-
tons and vortices, and the consideration of moving solitons.
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